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Abstract

The diamond product of a graph G(V,E) with a graph H(V ′, E′) denoted by G ⋄ H is
a graph whose a vertex set V (G ⋄ H) is a Hom(G,H) and an edge set E(G ⋄ H) =
{{f, g}|f, g ∈ Hom(G,H) and {f(x), g(x)} ∈ E′, for all x ∈ V (G)}. A round robin tourna-
ment problem involves creating a schedule where each participant plays against every other
participant exactly once. This research represents the application of the diamond product of
path graph and complete graph to 2n-participants round robin tournament problem. More-
over, the research also represents an algorithm to find a solution of 2n-participants round robin
tournament problem.
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1 Introduction

Graph theory has many theoretical techniques to be used to solve a scheduling problem such
as a traveling salesman problem, a schedule of a sport tournament, a schedule of machine, and
etc. The objective usually is to minimize the number of traveling, the total distance of traveling,
the cost of traveling, or the machine time. There are many techniques which are used to solve a
scheduling problem in different conditions. In 2007, Ribeiro and Urrutia [7] studied the effective
heuristics and mirrored Traveling Tournament Problem (mTTP). They presented the new GRILS-
mTTP heuristic used to solve the mTTP. In 2013, Hoshino and Kawarabayashi [4] applied theory
of graph to find the shortest-path and distance-optimal intra-league schedules based on Nippon
Professional Baseball. The following year, Goerigk et al. [3] presented the new technique to gener-
ate a schedule by finding the graph’s minimum-weight of three consecutive points or three-vertex
path. In 2018, Rutjanisarakul and Jiarasuksakun [8] presented the new method called the swap-
ping which was used in the genetic algorithm. They applied the genetic algorithm with swap-
ping method to solve the sport tournament problem with the minimum number of traveling of
all teams. In addition, a schedule of machine is also interesting. In 2022, Malhotra et al. [6] con-
sidered the flow shop scheduling and solved by using the model called "Branch and bound" with
three like parallel machines at the beginning level. The result was compared to other techniques
and it presented that this technique had more efficiency than other techniques. However, there is
another interested operator, which is the diamond product defined by Arworn [2]. The diamond
product of two graphs is the special case of homomorphism. Damnernsawat [2] and Arworn,
who was her advisor, studied the diamond product operator and found theories of properties of
the diamond product of Cayley graphs of groups. In 2009, Thomkeaw and Arworn [9] studied
the endomorphism of book graphs and presented the properties of the endomorphism monoid.
In 2010, Jiarasuksakun et al. [5] studied the diamond product of two complete bipartite graphs.
They found that the diamond product of two complete bipartite graphs is also the complete bi-
partite graph. In addition, they found some properties of the endomorphismmonoid of diamond
product of two complete bipartite graphs. Although the diamond product operator is interesting,
commuting graphs are also interesting. In 2018, Bhat and Sudhakara [1] considered many graphs
such as trees, complete graphs, cycles and their generalized complements. The idea of partition
of graph motivates to consider the properties of the diamond product.

Nevertheless, this research shows some properties of the diamond product of a path graph
(Pn−1) with a complete graph (Kn). This research also shows the application of the diamond
product of a path graph (Pn−1) with a complete graph (Kn). The diamond product of a path
graph (Pn−1) with a complete graph (Kn) contains all solutions of the round robin tournament
scheduling problem of n teams, where n is an even positive integer greater than 2. Moreover, we
also present an algorithm for finding a subgraph of the diamond product of a path graph (Pn−1)
with a complete graph (Kn) that is a one of solutions of a round robin sport tournament of n
teams.

2 Preliminaries

2.1 Diamond product in graph

In this section, we describe the definition of the diamond product of graphs and the scheduling
problem that is studied in this research.
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Definition 2.1. [10] A homomorphism of a graph G = (V,E) into a graph H(V ′, E′) is a mapping
f : V → V ′, which preserves edges: for all x, y ∈ V , if {x, y} ∈ E, then {f(x), f(y)} ∈ E′. Let
Hom(G,H)) be the class of all homomorphisms from a graph G into a graph H .

For example, Hom(P2,K3) consists of 6 homomorphisms, as shown in Figure 1.

Figure 1: Finding Hom(P2, K3).

Hom(P2,K3) = {(1 2), (1 3), (2 3), (2 1), (3 1), (3 2)}. However, Hom(K3, P2) cannot be found.

Definition 2.2. [2] The diamond product of a graph G = (V,E) and a graph H = (V ′, E′) (denoted by
G ⋄ H) is a graph defined by the vertex set V (G ⋄ H) = Hom(G,H), where Hom(G,H) ̸= ∅, and the
edge set E(G ⋄H) = {{f, g} ⊂ Hom(G,H)|{f(x), g(x)} ∈ E′for all x ∈ V }.

An example of graph P2 ⋄K3 is illustrated in Figure 2.

Figure 2: Graph P2 ⋄ K3.

2.2 The scheduling problem

The scheduling problem is to find scheduling sequences of all teams in a tournament. There
are 2 kinds of tournament that are round robin tournament and double round robin tournament.
The difference between these tournaments is the number of weeks in a tournament where the
number of weeks of double round robin tournament is twice as large as the number of weeks of
round robin tournament.

For example, scheduling sequences of four team round robin tournament as shown in Table 1.
There are three weeks in four team round robin tournament.
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Table 1: An example of four team round robin tournament.

Team number W1 W2 W3

1 4 3 2
2 3 4 1
3 2 1 4
4 1 2 3

Note: W1, W2 and W3 represent weeks 1, 2 and 3, respectively.

2.3 Relation between diamond product graph and scheduling

The scheduling of four team round robin tournament can be formed a complete graph with
four vertices, which each vertex represents the scheduling of a team. According to the Table 1, the
scheduling of team number 1, 2, 3, and 4 are vertices v1 = (4 3 2), v2 = (3 4 1), v3 = (2 1 4), and
v4 = (1 2 3), respectively. Moreover, any two vertices are adjacent if two vertices of scheduling of
a team are in the same tournament. So, each vertex vi is adjacent to each others. Thus, a formed
graph is a complete graphK4 as shown in Figure 3.

Figure 3: A graph of four team round robin tournament.

Alternatively, the graph P3 ⋄ K4 is considered. The vertex set of P3 ⋄ K4 is Hom(P3,K4) =
{f = (f(1) f(2) f(3))|f(i) ̸= f(i + 1), where i = 1, 2}. There are 36 homomorphisms which are
separated into 2 subset: repeated (fr = {f |f(1) = f(3)}) and distinct (fd = {f |f(1) ̸= f(3)} or
fd = {f |f is injective}). Hence, f = fr ∪ fd, |fr| = 12 and |fd| = 24. Next, we consider the vertex
that is belong to the set fd. We can choose four vertices from the set fd by the following algorithm.

Step 1: Choose a vertex f1 = (f1(1) f1(2) f1(3)) in fd, which f1(i) ̸= 1 for all i.
An example of f1 is (4 3 2).

Step 2: After f1 is obtained, f2 is chosen with conditions:

• f2(i) = 1when f1(i) = 2. Then, f2(3) = 1.
• f2(i) ̸= f1(i) for all i. Then, f2(1) = 3 and f2(2) = 4.

An example of f2 is (3 4 1).

Step 3: After f1 and f2 are obtained, f3 is chosen with conditions:

• f3(i) = 1when f1(i) = 3, and f3(i) = 2 when f2(i) = 3. Then, f3(1) = 2,
and f2(2) = 1.

• f3(i) ̸= f1(i) and f3(i) ̸= f2(i). Then, f3(3) = 4.

An example of f3 is (2 1 4).
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After f1, f2, and f3 are obtained, f4 will be fixed. An example of f4 is (1 2 3).

Next, the adjacency of fi, where i = 1, 2, 3, 4, is considered. The vertices f1 and f2 are adjacent
because {f1(i), f2(i)} is an edge of K4 for all i ∈ P3. Also, the vertices fi and fj are connected for
all i ̸= j. Hence, each vertex connects to each other. A graph (G(V,E)) with V = {f1, f2, f3, f4}
and E = {{fi, fj}|i ̸= j} is a complete graph (K4) and also a subgraph of P3 ⋄ K4 as shown in
Figure 4.

Figure 4: A subgraph of P3 ⋄ K4 presenting four team round robin tournament.

Moreover, the meaning of each vertex fi is a schedule of team i such as f1 = (4 3 2)means the
team 1 having three competitions against team 4, 3, 2, respectively.

We observe that a complete subgraph can represent a schedule of a round robin tournament
because a graph in Figure 3 is as same as a graph in Figure 4.

However, a schedule of round robin tournament is not an unique. There are six different sched-
ules of four team round robin tournament. All graphs that represent a schedule of four team round
robin tournament are complete subgraph of P3 ⋄K4.

3 Results

In this section, we describe some properties of the diamond product of Pn−1 ⋄Kn, which are
about connectivity, the diameter, and subgraph. We also represent the application of the diamond
product of Pn−1 ⋄Kn, which is applied to the scheduling of round robin tournament.

Theorem 3.1. Pn−1 ⋄Kn is a connected graph.

Proof. Let V (Pn−1 ⋄Kn) =Hom (Pn−1,Kn) = {vi = (fi(1) fi(2) . . . fi(n−1))|fi : V (Pn−1) → Kn

and {fi(m), fi(m + 1)} ∈ E(Kn), where m = 1, 2, . . . , n − 2}. Considering the value of n is
separated into two cases:

• Case 1: n = 3, that is the smallest value of n. V (P2 ⋄K3) = {(1 2), (1 3), (2 1), (2 3), (3 1),
(3 2)}. There are two possibilities of randomly choosing two vertices from V (P2 ⋄K3). Let
vi = (fi(1) fi(2)) and vj = (fj(1) fj(2)) be vertices inV (P2⋄K3). The first case is fi(1) ̸= fj(1)
and fi(2) ̸= fj(2). It means that vi and vj are adjacent. The second case is either fi(1) = fj(1)
or fi(2) = fj(2). It means that vi and vj are not adjacent. Without loss of generality, assume
that fi(1) = fj(1). There exists a vertex vx = (fx(1) fx(2)) that is adjacent to vi and vj .
A vertex vx can be generated by the following algorithm. Since fi(2) ̸= fj(2), fx(2) can be
chosen from the set V (K3)−{fi(2), fj(2)}. So, there is only one choice because |V (K3)| = 3,
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|{fi(2), fj(2)}| = 2, and |V (K3) − {fi(2), fj(2)}| = 1. Thus, fx(2) = fi(1) = fj(1). Next,
fx(1) can be chosen from the set V (K3)−{fi(1), fj(1), fx(2)}. There are two choices because
|V (K3)| = 3 and |{fi(1), fj(1), fx(2)}| = 1 such that |V (K3) − {fi(1), fj(1), fx(2)}| = 2.
Hence, there exists vx ∈ V (P2 ⋄K3), which is adjacent to vi and vj . Therefore, vi and vj are
connected.

• Case 2: n > 3, there are two possibilities of randomly choosing two vertices from V (Pn−1 ⋄
Kn). Let vi = (fi(1) fi(2) . . . fi(n − 1)) and vj = (fj(1) fj(2) . . . fj(n − 1)) be vertices in
V (Pn−1 ⋄Kn). The first case is fi(k) ̸= fj(k), for all k ∈ V (Pn−1). It means that vi and vj are
adjacent. The second case is either fi(k) = fj(k), for some k ∈ V (Pn−1). It means that vi and
vj are not adjacent. However, there exists a vertex vx that is adjacent to vi and vj . A vertex
vx can be generated by the following algorithm. The first step is to find fx(1). Since vx is
adjacent to vi and vj , fx(1) ̸= fi(1) and fx(1) ̸= fj(1). So, fx(1) ∈ V (Kn)−{vi(1), vj(1)}. The
set V (Kn)−{fi(1), fj(1)} is not an empty set because |V (Kn)| = n and 1 ≤ |{fi(1), fj(1)}| ≤
2 such that 0 < n − 2 ≤ |V (Kn) − {fi(1), fj(1)}| ≤ n − 1. So, fx(1) exists. Next, fx(k), for
any k ∈ V (Pn−1) − 1 can be chosen from the set V (Kn) − {fi(k), fj(k), fx(k − 1)}. The
set V (Kn) − {fi(k), fj(k), fx(k − 1)} is not an empty set because |V (Kn)| = n and 1 ≤
|{fi(k), fj(k), fx(k−1)}| ≤ 3 such that 0 < n−3 ≤ |V (Kn)−{fi(k), fj(k), fx(k−1)}| ≤ n−1.
So, fx(k) exists for any k ∈ V (Pn−1)− 1. By the above steps, vx ∈ V (Pn−1 ⋄Kn) can be form
and vx is adjacent to vi and vj for i ̸= j. Hence, vi and vj are connected for i ̸= j. Therefore,
Pn−1 ⋄Kn is a connected graph.

Theorem 3.2. The diam(Pn−1 ⋄Kn) is equal to 2.

Proof. Let vi and vj be vertices of Pn−1 ⋄Kn. vi = (fi(1) fi(2) . . . fi(n− 1)) and vj = (fj(1) fj(2)
. . . fj(n−1)). From Theorem 3.1, a path that connects any two vertices of Pn−1 ⋄Kn can be found.
There are two possibilities of randomly choosing two vertices from V (Pn−1 ⋄Kn).

• Case 1: vi is adjacent to vj . So, the distance (d(vi, vj)) is equal to 1.

• Case 2: vi is not adjacent to vj . There exists vx that is adjacent to vi and vj for i ̸= j. So, the
distance (d(vi, vj)) is equal to 2 because of the path vi − vx − vj . Therefore, the diam(Pn−1 ⋄
Kn) is equal to 2.

Theorem 3.3. A complete graph Kn is a subgraph of Pn−1 ⋄Kn, where n is an integer greater than 2.

Proof. Let Pn−1 ⋄Kn be a diamond product graph which has the vertex set V (Pn−1 ⋄Kn) =Hom
(Pn−1,Kn) = {f |f : V (Pn−1) → Kn and {f(i), f(i + 1)} ∈ E(Kn), where i = 1, 2, . . . , n −
2} and the edge set E(Pn−1 ⋄ Kn) = {{f, g}|{f(i), g(i)} ∈ E(Kn), where i = 1, 2, . . . , n − 1}.
Let G be a graph that has the vertex set V (G) = {f1, f2, . . . , fn} and |V (G)| = n. Define fi =
(fi(1) fi(2) . . . fi(n − 1)) ∈ Hom(Pn−1,Kn). {fi, fj} is an edge of a graph G if {fi(k), fj(k)} ∈
E(Kn) or fi(k) ̸= fj(k) for all k = 1, 2, . . . , n−1. Considering k = 1, f1(1), f2(1), f3(1), . . . , fn(1)
can be formed by the permutation of {1, 2, . . . , n}. Thus, fi(1) ̸= fj(1), when i ̸= j. Considering
k = 2, f1(2), f2(2), f3(2), . . . , fn(2) can be formed by the permutation of {1, 2, . . . , n} with the
additional condition fi(2) ̸= fi(1) for i = 1, 2, . . . , n. By the same idea, f1(k), f2(k), . . . , fn(k)
can be formed by the permutation of {1, 2, . . . , n} with the additional condition fi(k) ̸= fi(k − 1)
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for i = 1, 2, . . . , n. By the above algorithm, f1, f2, . . . , fn are obtained and fi ∈ V (Pn−1 ⋄ Kn)
and {fi, fj} ∈ E(Pn−1 ⋄Kn) for i ̸= j and E(G) = {{fi, fj}|i ̸= j}. Thus, G is a complete graph
on n vertices orKn. Moreover, V (G) ⊂ V (Pn−1 ⋄Kn) and E(G) ⊂ E(Pn−1 ⋄Kn). Therefore, G is
a complete subgraph of Pn−1 ⋄Kn.

Corollary 3.1. Kn is the largest complete subgraph of Pn−1 ⋄Kn.

Proof. Let Kn be a complete subgraph of Pn−1 ⋄ Kn. Let g ∈ V (Pn−1 ⋄ Kn) and g /∈ V (Kn).
Since fi = (fi(1) fi(2) . . . fi(n − 1)) ∈ V (Kn), where i = 1, 2, . . . , n and f1(k), f2(k), . . . , fn(k)
are generated by permutating the set {1, 2, . . . , n}. Assume that G is a complete graph, where
V (G) = V (Kn) ∪ g. Since g = (g1 g2 . . . gn−1) ∈ V (Pn−1 ⋄ Kn), gk ∈ {1, 2, . . . n}. However,
{f1(k), f2(k), . . . , fn(k)} = {1, 2, . . . , n}. Hence, gk = fi(k) for some i ∈ {1, 2, . . . , n}. Then
{g, fi} /∈ E(Pn−1 ⋄ Kn). Thus, a graph G is not a complete graph. Therefore, Kn is the largest
complete subgraph of Pn−1 ⋄Kn.

Theorem 3.4. LetG be a subgraph of Pn−1⋄Kn, where n is an even number greater than 2. G is a schedule
of n team round robin tournament if and only if G is a complete graph and satisfies following conditions:

C1: V (G) = {fi = (fi(1) fi(2) . . . fi(n− 1))|fi : V (Pn−1) → V (Kn)− {i} is an injective function,
fi(k) ̸= i, for all k = 1, 2, 3, . . . , n− 1 and i = 1, 2, 3, . . . , n}.

C2: fi(k) = j if and only if fj(k) = i for i, j ∈ V (Kn) and k ∈ V (Pn−1).

Proof. Let G be a subgraph of Pn−1 ⋄Kn and has the vertex set V (G) = {f1, f2, . . . , fn}.
(⇒). Suppose that G is a schedule of n teams round robin tournament. Each vertex of G is a
schedule of each team. fi = (fi(1) fi(2) . . . fi(n− 1)) is a sequence of teams againsting to team i
and fi(k) are distinct for all k = 1, 2, . . . , n−1. Thus, fi ∈ f : {1, 2, . . . , n−1} → {1, 2, . . . , n}−{i}
and fi is an injective function. Moreover, f1(k), f2(k), . . . , fn(k) represent games of each team in
the week k. Thus, fi(k) = j if and only if fj(k) = i, for all k ∈ {1, 2, . . . , n − 1}. Therefore, the
graph G is a complete graph which satisfies conditions C1 and C2.
(⇐). Suppose that G is a complete graph which satisfies conditions C1 and C2. Let G be a sub-
graph of Pn−1 ⋄Kn with V (G) = {f1, f2, . . . , fn}, where fi : V (Pn−1) → V (Kn) − {i}. fi can be
generated by the following algorithm.

The algorithm is considered into two cases that are n

2
is an even number and n

2
is an odd

number:

Case: n

2
is an even number.

Step 1: Consider k ∈
{
1, 2, . . . ,

n

2

}
. Then,

fi(k) =


n

2
+ i+ k − 1, if n

2
+ i+ 1 ≤ n,

i+ k − 1, if n

2
+ i+ 1 > n,

for i ∈
{
1, 2, . . . ,

n

2

}
and fi(k) = j, for i ∈

{n

2
+ 1,

n

2
+ 2, . . . , n

}
if fj(k) = i for

j ∈
{
1, 2, . . . ,

n

2

}
.
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After fi(1), fi(2), . . . , fi
(n
2

)
, for all i are obtained, we observe that

fi :
{
1, 2, . . . ,

n

2

}
→

{n

2
+ 1,

n

2
+ 2, . . . , n

}
,

where i ∈
{
1, 2, . . . ,

n

2

}
and

fi :
{
1, 2, . . . ,

n

2

}
→

{
1, 2, . . . ,

n

2

}
,

where i ∈
{n

2
+ 1,

n

2
+ 2, . . . , n

}
are bijective functions.

Step 2: Consider k ∈
{n

2
+ 1,

n

2
+ 2, . . . , n− 1

}
. In case of fi(k), where i ∈

{
1, 2, . . . ,

n

2

}
, fi(k)

is constructed by permutating the number in the set
{
1, 2, . . . ,

n

2

}
with two conditions:

fi(k) ̸= i and fi(k) = j,

if and only if fj(k) = i. In case of fi(k), where i ∈
{n

2
+ 1,

n

2
+ 2, . . . , n

}
is also con-

tructed by permutating the number in the set
{n

2
+ 1,

n

2
+ 2, . . . , n− 1

}
with two con-

ditions:

fi(k) ̸= i and fi(k) = j,

if and only if fj(k) = i. After fi
(n
2
+ 1

)
, fi

(n
2
+ 2

)
, . . . , fi (n− 1), for all i, are ob-

tained, we observe that

fi :
{n

2
+ 1,

n

2
+ 2, . . . , n− 1

}
→

({
1, 2, . . . ,

n

2

}
− {i}

)
,

where i ∈
{
1, 2, . . . ,

n

2

}
and

fi :
{n

2
+ 1,

n

2
+ 2, . . . , n− 1

}
→

({n

2
+ 1,

n

2
+ 2, . . . , n

}
− {i}

)
,

where i ∈
{n

2
+ 1,

n

2
+ 2, . . . , n

}
are bijective functions.

Generally, in case of step 2 will be as same as the generating of the case n

2
that is obtained

before. The example shows a fi : V (P3) → V (K4) constructed by this algorithm. Suppose
that n = 4 and k ∈ {1, 2, 3}.

Step 1: Consider the case k ∈ {1, 2}, fi(1) =
4

2
+ i for i ∈ {1, 2} and fi(1) = j, for i ∈ {3, 4} if

fj(1) = i.
• For k = 1, f1(1) = 2 + 1 + 1 − 1 = 3, f2(1) = 2 + 2 + 1 − 1 = 4, f3(1) = 1 and
f4(1) = 2.

• For k = 2, f1(2) = 2+ 1+ 2− 1 = 4, f2(2) = 2+ 2− 1 = 3, f3(2) = 2 and f4(2) = 1.
Step 2: Consider the case k ∈ {3},

• For i = 1, 2, f3(1) = 2 and f3(2) = 1.
• For i = 3, 4, f3(3) = 4 and f3(4) = 3.
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So, we can represent f1, f2, f3, and f4 as shown in Table 2:

Table 2: A result of constructed f1, f2, f3, and f4.

k 1 2 3

f1(k) 3 4 2
f2(k) 4 3 1
f3(k) 1 2 4
f4(k) 2 1 3

Since f1, f2, f3, and f4 are satisfied conditions C1 and C2, it follows that f1, f2, f3, and
f4 are vertices of a complete graph that is a subgraph of P3 ⋄K4. Therefore, each fi is
the schedule of team i in 4 teams round robin tournament.

Case: n

2
is an odd number.

Step 1: Consider k ∈
{
1, 2, . . . ,

n

2

}
and case of i separated into two cases:

{
1, 2, . . . ,

n

2

}
and{n

2
+ 1,

n

2
+ 2, . . . , n

}
.

Step 1.1: Consider i ∈
{
1, 2, . . . ,

n

2

}
, we add a dummy point (d) into the set

{
1, 2, . . . ,

n

2

}
.

It becomes the set
{
1, 2, . . . ,

n

2
, d
}
, which has n

2
+ 1 elements. Since n

2
+ 1 <

n, f1, f2, . . . , fn
2
, fd are obtained by this algorithm with smaller number n, then

f1, f2, . . . , fn
2
, fd are rearranged by a condition: fk(k) = d.

Step 1.2: Consider
{n

2
+ 1,

n

2
+ 2, . . . , n

}
, we apply the idea of Step 1.1 by adding a dummy

point (e) into the set
{n

2
+ 1,

n

2
+ 2, . . . , n

}
to obtain fn

2 +1, fn
2 +2, . . . , fn, fe. Then,

fn
2 +1, fn

2 +2, . . . , fn, fe are rearranged by a condition: fn
2 +k(k) = e.

Step 1.3: After f1, f2, . . . , fn are obtained, we have to change a value of fi(k) = d or fi(k) = e
with a condition: if fi(k) = d and fj(k) = e, then fi(k) = j and fj(k) = i, for
i, j ∈ {1, 2, . . . , n}.

Step 2: Consider k ∈
{n

2
+ 1,

n

2
+ 2, . . . , n− 1

}
. Then,

fi(k) =

i+ k, if i+ k ≤ n,

i+ k − n

2
, if i+ k > n,

for i ∈
{
1, 2, . . . ,

n

2

}
and the image of fi(k) is a subset of

{n

2
+ 1,

n

2
+ 2, . . . , n

}
.

fi(k) are fixed, for i ∈
{n

2
+ 1,

n

2
+ 2, . . . , n

}
, and fi(k) = j if fj(k) = i, where

j ∈
{
1, 2, . . . ,

n

2

}
.

The example shows a fi : V (P5) → V (K6) constructed by this algorithm. Suppose that
n = 6 and k ∈ {1, 2, 3, 4, 5}. The example shows a fi : V (P5) → V (K6) constructed by this
algorithm. Suppose that n = 6 and k ∈ {1, 2, 3, 4, 5}.

Step 1: Consider k ∈ {1, 2, 3} and case of i separated into two cases: {1, 2, 3} and {4, 5, 6}.
Step 1.1: Consider i ∈ {1, 2, 3}, we add a dummy point (d) into the set {1, 2, 3}. It becomes

the set {1, 2, 3, d}, which has 4 elements. We apply the example above. Then, we
get Table 3:
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Table 3: An example of constructed f1, f2, f3, and fd.

k 1 2 3

f1(k) 3 d 2
f2(k) d 3 1
f3(k) 1 2 d
fd(k) 2 1 3

and we rearrange f1, f2, f3, fd by a condition: fk(k) = d. So, we swap the first
column and the second column. Then, we get Table 4:

Table 4: A result after rearranging f1, f2, f3, and fd.

k 1 2 3

f1(k) d 3 2
f2(k) 3 d 1
f3(k) 2 1 d
fd(k) 1 2 3

Step 1.2: Consider {4, 5, 6}, we apply the idea of Step 1.1 by adding a dummy point (e) into
the set {4, 5, 6} to obtain f4, f5, f6, fe. Then, we get Table 5:

Table 5: An example of constructed f4, f5, f6, and fe.

k 1 2 3

f4(k) 6 e 5
f5(k) e 6 4
f6(k) 4 5 e
fe(k) 5 4 6

and we rearrange f4, f5, f6, fe by a condition: fn
2 +k(k) = e. So, we swap the first

column and the second column. Then, we get Table 6:

Table 6: A result after rearranging f4, f5, f6, and fe.

k 1 2 3

f4(k) e 6 5
f5(k) 6 e 4
f6(k) 5 4 e
fe(k) 4 5 6

Step 1.3: After f1, f2, . . . , f6 are obtained, we have to change a value of fi(k) = d or fi(k) = e
with a condition: if fi(k) = d and fj(k) = e, then fi(k) = j and fj(k) = i, for
i, j ∈ {1, 2, . . . , 6}. Then, we get Table 7:
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Table 7: The merge of f1, f2, f3, f4, f5, and f6.

k 1 2 3

f1(k) 4 3 2
f2(k) 3 5 1
f3(k) 2 1 6
f4(k) 1 6 5
f5(k) 6 2 4
f6(k) 5 4 3

Step 2: Consider k ∈ {4, 5}. Then,

fi(k) =

{
i+ k, if i+ k ≤ 6,

i+ k − 3, if i+ k > 6,

for i ∈ {1, 2, 3} and we get Table 8:

Table 8: A result after adding value of f1(k), f2(k), f3(k),where k = 4, 5.

:

k 1 2 3 4 5

f1(k) 4 3 2 5 6
f2(k) 3 5 1 6 4
f3(k) 2 1 6 4 5
f4(k) 1 6 5
f5(k) 6 2 4
f6(k) 5 4 3

Then, fi(k) are fixed, for i ∈ {4, 5, 6}, and fi(k) = j if fj(k) = i, where j ∈ {1, 2, 3}.
Then, we get Table 9:

Table 9: A result of constructed f1, f2, f3, f4, f5, and f6.

k 1 2 3 4 5

f1(k) 4 3 2 5 6
f2(k) 3 5 1 6 4
f3(k) 2 1 6 4 5
f4(k) 1 6 5 3 2
f5(k) 6 2 4 1 3
f6(k) 5 4 3 2 1

Since f1, f2, f3, f4, f5 and f6 are satisfied conditions C1 and C2, it follows that
f1, f2, f3, f4, f5 and f6 are vertices of a complete graph that is a subgraph of P5 ⋄ K6.
Therefore, each fi is the schedule of team i in 6 teams round robin tournament.

We observe that fi : V (Pn−1) → V (Kn) obtained by this algorithm is injective, fi(k) ̸= i and
fi(k) = j if and only if fj(k) = i for all k ∈ {1, 2, . . . , n − 1}. Moreover, fi connects to fj if i ̸= j.
It means that {fi, fj} is an edge of the graph G. So, G(V (G), E(G)) is a complete subgraph of
Pn−1 ⋄Kn.

Furthermore, fi ∈ V (G) represents the schedule of team i because fi(k) ̸= i and fi is an
injective function. It means that a team i cannot be against to team i and a team imust be against
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to other teams. The meaning of fi(k) is a team i having a competition against team fi(k) at match
number k. If fi(k) = j, then fj(k) = i because of a competition of team i at match number k.
Therefore, G is a schedule of n team round robin tournament.

Lemma 3.1. A graph Pn−1 ⋄Kn contains all different schedules of n teams round robin tournament.

Proof. FromTheorem 3.4, all schedule of n teams round robin tournament are complete subgraphs
of Pn−1 ⋄ Kn. Therefore, the graph Pn−1 ⋄ Kn contains all different schedules of n teams round
robin tournament.

4 Conclusions

In conclusion, a graph Pn−1 ⋄ Kn is a connceted graph and it has the diameter being 2. A
subgraph of the diamond product of a path graph (Pn−1) and a complete graph (Kn) is the one
of solutions of 2n teams round robin tournament scheduling problem. The diamond product
of graphs (Pn−1 ⋄Kn) also contains all solutions of 2n teams round robin tournament scheduling
problem. Hence, the the diamondproduct of graphs (Pn−1⋄Kn) can be applied to find all solutions
or a solution of 2n teams round robin tournament scheduling problem. Moreover, this paper
presents an algorithm to find one of solutions of 2n teams round robin tournament. However,
another solution can be found by permutating an algorithm solution.
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